Modeling the interaction of dodecylphosphocholine micelles with the anticoccidial peptide PW2 guided by NMR data.
نویسندگان
چکیده
Antimicrobial peptides are highly dynamic entities that acquire structure upon binding to a membrane interface. To better understand the structure and the mechanism for the molecular recognition of dodecylphosphocholine (DPC) micelles by the anticoccidial peptide PW2, we performed molecular dynamics (MD) simulations guided by NMR experimental data, focusing on strategies to explore the transient nature of micelles, which rearrange on a millisecond to second timescale. We simulated the association of PW2 with a pre-built DPC micelle and with free-DPC molecules that spontaneously forms micelles in the presence of the peptide along the simulation. The simulation with spontaneous micelle formation provided the adequate environment which replicated the experimental data. The unrestrained MD simulations reproduced the NMR structure for the entire 100 ns MD simulation time. Hidden discrete conformational states could be described. Coulomb interactions are important for initial approximation and hydrogen bonds for anchoring the aromatic region at the interface, being essential for the stabilization of the interaction. Arg9 is strongly attached with phosphate. We observed a helix elongation process stabilized by the intermolecular peptide-micelle association. Full association that mimics the experimental data only happens after complete micelle re-association. Fast micelle dynamics without dissociation of surfactants leads to only superficial binding.
منابع مشابه
Structural biology of membrane-acting peptides: conformational plasticity of anticoccidial peptide PW2 probed by solution NMR.
The bottleneck for the complete understanding of the structure-function relationship of flexible membrane-acting peptides is its dynamics. At the same time, not only the structure but also the dynamics are the key points for their mechanism of action. Our model is PW2, a TRP-rich, cationic peptide selected from phage display libraries that shows anticoccidial activity against Eimeria acervulina...
متن کاملNMR Studies of a Model Antimicrobial Peptide in the Micelles of SDS, Dodecylphosphocholine, or Dioctanoylphosphatidylglycerol
NMR analysis of GI-20 in three micelles revealed that arginine side-chain H resonances are well resolved in dioctanoylphosphatidylglycerol (D8PG), allowing observations of peptide-lipid interactions. Structural differences in SDS and D8PG underscore caution with the use of SDS. Peptide chemical shifts are proposed to be a useful indicator of mi-
متن کاملInteractions between the conserved hydrophobic region of the prion protein and dodecylphosphocholine micelles.
The three-dimensional structure of PrP110-136, a peptide encompassing the conserved hydrophobic region of the human prion protein, has been determined at high resolution in dodecylphosphocholine micelles by NMR. The results support the conclusion that the (Ctm)PrP, a transmembrane form of the prion protein, adopts a different conformation than the reported structures of the normal prion protein...
متن کاملThe alignment of a voltage-sensing peptide in dodecylphosphocholine micelles and in oriented lipid bilayers by nuclear magnetic resonance and molecular modeling.
The S4 segments of voltage-gated sodium channels are important parts of the voltage-sensing elements of these proteins. Furthermore, the addition of the isolated S4 polypeptide to planar lipid bilayers results in stepwise increases of ion conductivity. In order to gain insight into the mechanisms of pore formation by amphipathic peptides, the structure and orientation of the S4 segment of the f...
متن کاملStructure and topography of the membrane-binding C2 domain of factor VIII in the presence of dodecylphosphocholine micelles.
A 21 residue peptide from the C2 domain of the antihaemophilic factor VIII competes with factor VIII for membrane-binding sites in vitro. Here, we provide the structure and topography of the peptide in solution, on dodecylphosphocholine (DPC) micelles, determined using 1H-NMR spectroscopy. The peptide assumes an amphipathic structure comprising an extended N-terminal region and a C-terminal hel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 18 8 شماره
صفحات -
تاریخ انتشار 2013